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Abstract

We consider the ultradiscretization of a solvable one-dimensional chaotic map
which arises from the duplication formula of the elliptic functions. It is shown
that the ultradiscrete limit of the map and its solution yield the tent map and
its solution simultaneously. A geometric interpretation of the dynamics of the
tent map is given in terms of the tropical Jacobian of a certain tropical curve.
Generalization to the maps corresponding to the mth multiplication formula of
the elliptic functions is also discussed.

PACS numbers: 02.30.Ik, 02.40.−k, 05.45.Ac
Mathematics Subject Classification: 37E05, 37F10, 14H40, 14H52, 14H70

1. Introduction

In this paper, we consider the following map,

zn+1 = f (zn) = 4zn(1 − zn)(1 − k2zn)(
1 − k2z2

n

)2 , (1.1)

which admits the general solution

zn = sn2(2nu0; k), (1.2)

describing the orbit in [0, 1]. Here sn(u; k) is Jacobi’s sn function, 0 < k < 1 is the modulus
and u0 is an arbitrary constant. In fact, (1.1) can be reduced to the duplication formula of sn
function:

sn(2u; k) = 2sn(u; k)cn(u; k) dn(u; k)

1 − k2 sn4(u; k)
, (1.3)

cn2(u; k) = 1 − sn2(u; k), dn2(u; k) = 1 − k2 sn2(u; k), (1.4)
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where cn(u; k) and dn(u; k) are Jacobi’s cn and dn functions, respectively. The map (1.1) is
a generalization of the logistic map (or the Ulam–von Neumann map):

zn+1 = 4zn(1 − zn), zn = sin2(2nu0). (1.5)

Map (1.1) was first considered by Schröder [28] in 1871, and it has been studied by many
authors [10, 12, 38, 39]. It is now classified as one of the (flexible) Lattès maps [21]. In this
paper, we call (1.1) the Schröder map.

It is well known that the Schröder map is conjugate to the tent map for Xn ∈ [0, 1]:

Xn+1 = T2(Xn) = 1 − 2

∣∣∣∣Xn − 1

2

∣∣∣∣ =
{

2Xn 0 � Xn � 1
2 ,

2(1 − Xn)
1
2 � Xn � 1.

(1.6)

Namely, we have the relation

s ◦ f ◦ s−1 = T2, s(z) = 1

K(k)
sn−1(

√
z; k), (1.7)

where K(k) is the complete elliptic integral of the first kind,

K(k) =
∫ 1

0

dx√
(1 − x2)(1 − k2x2)

. (1.8)

The purpose of this paper is to establish a new relationship between the Schröder map
and the tent map through a certain limiting procedure called the ultradiscretization [35]. The
method of ultradiscretization has achieved a great success in the theory of integrable systems.
From the integrable difference equations, various interesting piecewise linear dynamical
systems have been constructed systematically, such as the soliton cellular automata [4, 6,
17, 22, 29–31, 34, 37, 41] and piecewise linear version of the Quispel–Roberts–Thompson
(QRT) maps [23, 26, 32, 36]. The resulting piecewise linear discrete dynamical systems can
be expressible in terms of the max and ± operations, which we call the ultradiscrete systems.
The key of the method is that one can obtain not only the equations but also their solutions
simultaneously. It also allows us to understand the underlying mathematical structures of the
ultradiscrete systems [2, 3, 5, 8, 11, 13–16, 25, 33].

In this paper, we apply the ultradiscretization to the Schröder map (1.1) and its elliptic
solution (1.2). As a result, they are reduced to the tent map and its solution. We also clarify
the tropical geometric nature of the tent map; we show that the tent map can be regarded as
the duplication map on the Jacobian of a certain tropical curve.

2. The ultradiscretization of the Schröder map

The key of the ultradiscretization is the following formula:

lim
ε→+0

ε log
(
e

A
ε + e

B
ε + · · · ) = max(A,B, . . .), (2.1)

where the terms in log must be positive, and the dominant term survives under the limit. We
note that the orbit of the map (1.1) is always restricted in [0, 1] if the initial value is in this
interval. Since this is somewhat too restrictive for ultradiscretization, we apply the fractional
linear transformation

zn �−→ xn = zn

1 − zn

, (2.2)

which maps [0, 1] → [0,∞). Then the Schröder map (1.1) and its solution (1.2) are rewritten
as
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Figure 1. Map functions of (1.1) (left: k = 0.7) and (2.3) (right: k′ = 0.8).

xn+1 = φ(xn) = 4xn(1 + xn)(1 + k′2xn)(
1 − k′2x2

n

)2 , k′2 = 1 − k2, (2.3)

xn = zn

1 − zn

= sn2(2nu0; k)

1 − sn2(2nu0; k)
= sn2(2nu0; k)

cn2(2nu0; k)
, (2.4)

respectively. We note that the map (2.3) can be obtained from (1.1) by replacing as
zn −→ −xn, k −→ k′ = √

1 − k2. On the level of solution, this corresponds to Jacobi’s
imaginary transformation

−i sn(iu; k′) = sn(u; k)

cn(u; k)
. (2.5)

Figure 1 shows the map functions of (1.1) and (2.3). Note that f (z) and φ(x) have poles at
z = ±1/k and x = ±1/k′, respectively.

Now we put

xn = exp

[
Xn

ε

]
, k′ = exp

[
− L

2ε

]
, (0 < k′ < 1, L > 0). (2.6)

Then (2.3) is rewritten as

Xn+1 = Fε(Xn) = ε log

[
4 e

Xn
ε

(
1 + e

Xn
ε

)(
1 + e

Xn−L
ε

)
(
1 − e

2Xn−L
ε

)2

]
. (2.7)

Taking the limit ε → +0 by using the formula (2.1), we obtain

Xn+1 = F(Xn) = Xn + max(0, Xn) + max(0, Xn − L) − 2 max(0, 2Xn − L)

=

⎧⎪⎪⎨
⎪⎪⎩

Xn Xn < 0,

2Xn 0 � Xn < L
2 ,

−2Xn + 2L L
2 � Xn < L,

−Xn + L L � Xn.

(2.8)
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Figure 2. Left: map function of the ultradiscrete Schröder map (2.8). Right: limit transition of
the map function Fε(X) for L = 1.5. Dashed line: ε = 0.3, dot-dashed line: ε = 0.1, solid line:
ε = 0.01.

Remark 2.1. Although the terms in log in the formula (2.1) must be positive in general, the
negative terms can also exist as long as they are not dominant in the limit. For example, we
have

lim
ε→+0

ε log
(
e

A
ε − e

B
ε

)2 = lim
ε→+0

ε log
(
e

2A
ε − 2 e

A+B
ε + e

2B
ε

) = 2 max(A,B). (2.9)

We call the map (2.8) the ultradiscrete Schröder map. Figure 2 shows the map function of
(2.8) and limit transition of the function Fε(X). The dynamics of the map (2.8) is described as
follows: if the initial value X0 is in [0, L], the map is the tent map and Xn ∈ [0, L] for all n. If
X0 ∈ (−∞, 0], then Xn = X0 for all n � 1. Finally if X0 ∈ [L,∞), then X1 = −X0 + L < 0
and Xn = X1 for all n � 1. Therefore, the ultradiscrete Schröder map (2.8) is essentially the
tent map on [0, L]:

Xn+1 = L

(
1 − 2

∣∣∣∣Xn

L
− 1

2

∣∣∣∣
)

, Xn ∈ [0, L], (2.10)

and otherwise the dynamics is trivial.
Now let us consider the limit of the solution by using the ultradiscretization of the elliptic

theta functions [32](see also [14, 24, 25]). Jacobi’s elliptic functions are expressed in terms
of the elliptic theta functions ϑi(ν) (i = 0, 1, 2, 3) as

sn(u; k) = ϑ3(0)ϑ1(ν)

ϑ2(0)ϑ0(ν)
, cn(u; k) = ϑ0(0)ϑ2(ν)

ϑ2(0)ϑ0(ν)
, (2.11)

u = π(ϑ3(0))2ν, k2 =
(

ϑ2(0)

ϑ3(0)

)4

, (2.12)

where

ϑ0(ν) =
∑
n∈Z

(−1)nqn2
z2n, (2.13)

ϑ1(ν) = i
∑
n∈Z

(−1)nq(n−1/2)2
z2n−1, (2.14)

4
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ϑ2(ν) =
∑
n∈Z

q(n−1/2)2
z2n−1, (2.15)

ϑ3(ν) =
∑
n∈Z

qn2
z2n, (2.16)

and z = exp[iπν]. We parametrize the nome q as

q = exp

[
−επ2

θ

]
, θ > 0. (2.17)

Applying Jacobi’s imaginary transformation (or Poisson’s summation formula) the elliptic
theta functions are rewritten as

ϑ0(ν) =
√

θ

επ

∑
n∈Z

exp

[
−θ

ε

{
ν −

(
n +

1

2

)}2
]

, (2.18)

ϑ1(ν) =
√

θ

επ

∑
n∈Z

(−1)n exp

[
−θ

ε

{
ν −

(
n +

1

2

)}2
]

, (2.19)

ϑ2(ν) =
√

θ

επ

∑
n∈Z

(−1)n exp

[
−θ

ε
(ν − n)2

]
, (2.20)

ϑ3(ν) =
√

θ

επ

∑
n∈Z

exp

[
−θ

ε
(ν − n)2

]
. (2.21)

Asymptotic behaviour of these functions for ε → +0 is given by

ϑ0(0) ∼ 2

√
θ

επ
exp

[
− θ

4ε

]
, (2.22)

ϑ2(0) ∼
√

θ

επ

(
1 − 2 exp

[
−θ

ε

])
, (2.23)

ϑ3(0) ∼
√

θ

επ

(
1 + 2 exp

[
−θ

ε

])
, (2.24)

(ϑ0(ν))2 ∼ θ

επ
exp

[
−2θ

ε

{
((ν)) − 1

2

}2
]

, (2.25)

(ϑ1(ν))2 ∼ θ

επ
exp

[
−2θ

ε

{
((ν)) − 1

2

}2
]

, (2.26)

(ϑ2(ν))2 ∼ θ

επ

(
exp

[
−θ

ε
{((ν))}2

]
− exp

[
−θ

ε
{((ν)) − 1}2

])2

, (2.27)

where ((ν)) is the decimal part of ν, namely,

((ν)) = ν − Floor(ν), 0 � ((ν)) < 1. (2.28)

Then we have

k′2 = exp

[
−L

ε

]
= 1 − k2 = 1 −

(
ϑ2(0)

ϑ3(0)

)4

∼ 16 exp
[− θ

ε

] (
1 + 4 exp

[− 2θ
ε

])
(
1 + 2 exp

[− θ
ε

])4 ,

xn = exp

[
Xn

ε

]
= sn2(u; k)

cn2(u; k)
=

(
ϑ3(0)ϑ1(ν)

ϑ0(0)ϑ2(ν)

)2

∼
(
1 + 2 exp

[− θ
ε

])2
exp

[ 2θ((ν))

ε

]
4
(
1 − exp

[
θ
ε
[2((ν)) − 1]

])2 ,

5
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which yield in the limit ε → +0

L = θ, (2.29)

Xn = θ
(
1 − 2

∣∣((ν)) − 1
2

∣∣) , ν = 2nν0, (2.30)

respectively, where ν0 is an arbitrary constant. We note that in taking the limit of xn, we have
put the arbitrary constant u0 as

u0 = θ

ε
ν0 (2.31)

so that

ν = 2nu0

π(ϑ3(0))2
= 2nν0

θ
ε

π(ϑ3(0))2
−→ 2nν0 (ε → +0). (2.32)

One can verify that (2.29) and (2.30) actually satisfy the ultradiscrete Schröder map (2.8) or
(2.10) by direct calculation. Therefore, we have shown that through the ultradiscretization the
Schröder map (2.3) and its solution (2.4) yield the map (2.8) (or (2.10)) and its solution (2.30)
simultaneously.

Remark 2.2

(i) The fundamental periods of sn2(u;k)

cn2(u;k)
are 2K(k) and 2iK(k′). In the ultradiscretization of

the elliptic theta functions, we have parametrized the nome q as (2.17), which implies
that the ratio of half-period τ is given by τ = i επ

θ
and

K(k) = π

2
(ϑ3(0))2 ∼ θ

2ε
, K(k′) = −π i

2
(ϑ3(0))2τ = π2ε

2θ
(ϑ3(0))2 ∼ π

2
, (2.33)

as ε → +0. Since we have u = θ
ε
ν, the fundamental periods with respect to ν tend to 1

and iεπ
θ

as ε → +0. This implies that the ultradiscretization of the elliptic functions is
realized by collapsing the imaginary period and keeping the real period finite.

(ii) The Schröder map (1.1) is reduced to the logistic map (1.5) for k = 0. This corresponds
to the ultradiscrete Schröder map (2.8) with L = 0,

Xn+1 = −|Xn|, (2.34)

whose dynamics is trivial, and the solution (2.30) becomes Xn = 0. Therefore
ultradiscretization of the logistic map does not yield an interesting map [9]. In fact,
we see that this case is not consistent with the ultradiscrete limit, since the asymptotic
behaviour of K(k) and K(k′) as k → 0 is given by

K(k) ∼ π

2
, K(k′) ∼ log

4

k
. (2.35)

One can apply the same procedure to the following map which originates from the
triplication formula of sn2[12, 21, 39]:

zn+1 = g(zn) = zn

{
k4z4

n − 6k2z2
n + 4(k2 + 1)zn − 3

}2{
3k4z4

n − 4k2(k2 + 1)z3
n + 6k2z2

n − 1
}2 , zn = sn2(3nu0; k), (2.36)

which is rewritten as

xn+1 = γ (xn)= xn

{
k′4x4

n − 6k′2x2
n − 4(k′2 + 1)xn − 3

}2{
3k′4x4

n + 4k′2(k′2 + 1)x3
n + 6k′2x2

n − 1
}2 , xn = sn2(3nu0; k)

cn2(3nu0; k)
, (2.37)

by the transformation (2.2). The map functions g(z) and γ (x) are illustrated in figure 3.
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Figure 3. Map functions of (2.36) (left: k = 0.7) and (2.37) (right: k′ = 0.8)

Then the ultradiscretization of (2.37) yields the map

Xn+1 = G(Xn) = Xn + 2 max(0, Xn, 4Xn − 2L) − 2 max(0, 3Xn − L, 4Xn − 2L)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Xn Xn < 0,

3Xn 0 � Xn < L
3 ,

−3Xn + 2L L
3 � Xn < 2L

3 ,

3Xn − 2L 2L
3 � Xn < L,

Xn L � Xn,

(2.38)

and its solution

Xn = L
(
1 − 2

∣∣((ν)) − 1
2

∣∣) , ν = 3nν0. (2.39)

Figure 4 shows the map function G(Xn) and the limit transition of the map function of

Xn+1 = Gε(Xn) = ε log

[
e

Xn
ε

{
e

4Xn−2L
ε − 6 e

2Xn−L
ε − 4

(
e− L

ε + 1
)

e
Xn
ε − 3

}2{
3 e

4Xn−2L
ε + 4

(
e− 2L

ε + e− L
ε

)
e

3Xn
ε + 6 e

2Xn−L
ε − 1

}2

]
. (2.40)

We note that one can directly ultradiscretize the map (2.36) to obtain (2.38); however, the
solution xn = sn2(3nu0; k) degenerates to the trivial solution Xn = 0. Thus it is important to
consider (2.37) in order to obtain the limit which is consistent with the solution.

It is possible to apply ultradiscretization to the maps arising from the mth multiplication
formula of sn2 [12, 21] in a similar manner.

3. Geometric description in terms of the tropical geometry

It is shown in [5, 25] that the tropical geometry provides a geometric framework for the
description of the ultradiscrete integrable systems. Therefore, it may be natural to expect that
a similar framework also works well for our case. In this section, we show that the ultradiscrete
Schröder map can be interpreted as the duplication map on the Jacobian of a certain tropical
curve. As for the basic notions of the tropical geometry, we refer to [1, 7, 27].

7
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Figure 4. Left: map function of the map (2.38). Right: limit transition of the map function Gε(X)

for L = 1.5. Dashed line: ε = 0.3, dot-dashed line: ε = 0.1, solid line: ε = 0.01.

We first consider the elliptic curve

[xy − b(x + y) + c]2 = 4d2xy, (3.1)

parametrized by

(x, y) =
(

sn2(u; k)

cn2(u; k)
,

sn2(u + η; k)

cn2(u + η; k)

)
, (3.2)

where η is a constant and b, c, d are given by

b = 1

k′2
cn2(η; k)

sn2(η; k)
, c = 1

k′2 , d = − 1

k′2
dn(η; k)

sn2(η; k)
, (3.3)

respectively. Eliminating η in (3.3), we see that b and d satisfy the relation

k′2d2 = (1 + k′2b)(1 + b). (3.4)

We may regard the Schröder map (2.3) as the projection of the dynamics of the point on the
elliptic curve (3.1) to the x-axis.

We next apply the ultradiscretization to the elliptic curve. Putting

x = e
X
ε , y = e

Y
ε , b = e

B
2ε , 4d2 = e

D
ε ,

k′ = e− L
2ε , c = 1

k′2 = e
L
ε , L > 0,

(3.5)

and taking the limit ε → +0, (3.1) and (3.4) yield

max(2X + 2Y,B + 2X,B + 2Y, 2L) = X + Y + D, (3.6)

and

−L + D = max

(
0,

B

2
− L

)
+ max

(
0,

B

2

)
, (3.7)

respectively. The condition (3.7) gives the following three cases:

(i) B > 2L > 0, D = B, (3.8)

8
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Figure 5. Ultradiscretization of the elliptic curve (3.1). Left: case (i), centre: case (ii), right:
case (iii).

(ii) 2L > B > 0, D = L +
B

2
, (3.9)

(iii) 0 > B, D = L. (3.10)

For each case, the set of points defined by (3.6) is (i) a line connecting
(

B
2 , B

2

)
and(

L − B
2 , L − B

2

)
, (ii) a rectangle with vertices

(
0, L − B

2

)
,
(
L − B

2 , 0
)
,
(
L, B

2

)
and

(
B
2 , L

)
,

(iii) a line connecting
(

B
2 , L − B

2

)
and

(
L − B

2 , B
2

)
, respectively, as illustrated in figure 5. In

the following, we consider only the case (ii) and denote the rectangle as C.
Let us recall some notions of the tropical geometry. The tropical curve defined by the

tropical polynomial

�(X, Y ) = max
(a1,a2)∈A

(λ(a1,a2) + a1X + a2Y ), A ∈ Z
2, (3.11)

is a set of points (X, Y ) ∈ R
2 where � is not smooth. Here A is a finite subset of Z

2 called
the support, and we denote as (A) the convex hull of A. Let �d be the triangle in Z

2 with
vertices (0, 0), (d, 0), (0, d). Then the degree of the tropical curve is d if (A) is inside �d

but not inside �d−1 [40]. The genus of the tropical curve is defined as the first Betti number
of the curve, namely the number of its cycles [1, 18, 19].

We consider the tropical polynomial

�(X, Y ) = max(2X + 2Y,B + 2X,B + 2Y, 2L,X + Y + D), (3.12)

under the condition (3.9). Let C be the tropical curve defined by �, which is illustrated in
figure 6. Then the degree and the genus of C are 4 and 1, respectively. Note that the rectangle
C is exactly the cycle of C.

Vigeland [40] has successfully introduced the group law on the tropical elliptic curve.
Unfortunately, however, his definition of tropical elliptic curve is limited to ‘smooth’ curve of
degree 3 and hence it does not cover our case. Nevertheless, it is possible to define the tropical
Jacobian J (C) of C [5, 20] and characterize the dynamics of the ultradiscrete Schröder map
(2.10) on it in the following manner: let Vi and Ei (i = 1, . . . , 4) be the vertices and edges of
C defined by

V1 = O =
(

0, L − B

2

)
, V2 =

(
L − B

2
, 0

)
,

V3 =
(

L,
B

2

)
, V4 =

(
B

2
, L

)
,

(3.13)
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X

Y

L

L− B

2

B

2

B

2
L− B

2

L

V1

V2

V3

V4

A X

Y

Δ(A)

Figure 6. Left: tropical curve C defined by (3.12). Right: support of (3.12).

V1V2 = E1, V2V3 = E2,

V3V4 = E3, V4V1 = E4,
(3.14)

respectively. The length of each edge is given as

|E1| =
√

2

(
L − B

2

)
, |E2| =

√
2

2
B,

|E3| =
√

2

(
L − B

2

)
, |E4| =

√
2

2
B.

(3.15)

The primitive tangent vector for each edge is

v1 = (1,−1), v2 = (1, 1), v3 = (−1, 1), v4 = (−1,−1). (3.16)

We introduce the total lattice length L as the sum of the length of each edge scaled by the
length of the corresponding primitive tangent vector, which is computed as

L =
4∑

i=1

|Ei |
|vi | = 2L. (3.17)

Then the tropical Jacobian J (C) is defined by

J (C) = R/LZ = R/2LZ. (3.18)

The Abel–Jacobi map μ : C → J (C) is defined as the piecewise linear map which is linear
on each edge satisfying

μ(V1) = 0, μ(V2) = L − B

2
, μ(V3) = L, μ(V4) = 2L − B

2
. (3.19)

Let π : C → R be the projection of the point on C to the X-axis. Let ρ be the map defined by
ρ = π ◦ μ−1 : J (C) → R which maps μ(P ) (P ∈ C) to the X-coordinate of P. Here we note
that π−1 is 1:2 and we define π−1(X) to be the point on C whose Y-coordinate is smaller. In
this setting, ρ(p) (p ∈ J (C)) can be written as

ρ(p) = (π ◦ μ−1)(p) =
{
p 0 � p � L,

−p + 2L L � p � 2L,
(3.20)

as shown in the left of figure 7.
Now we define the duplication map ϕ2 : J (C) → J (C) by

ϕ2(p) ≡ 2p(modL), p ∈ J (C), (3.21)

10
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V4

V3

V2

V1 = O
J(C)

L

L− B

2
B

2

L− B

2
L 2L− B

2

X

ρ

2L
J(C)2L

π

π−1

μ μ−1

ϕ2pn pn

Xn

Xn+1

X

L

L

Φ2

Figure 7. Left: correspondence between X and J (C) by ρ. Right: duplication map ϕ2 and �2.

and introduce �2 : R → R as the conjugation map of ϕ2 by ρ,

�2 = ρ ◦ ϕ2 ◦ ρ−1. (3.22)

In order to write the map �2 explicitly, we introduce p′, p′′ ∈ J (C) for P = (X, Y ) ∈ C by

p′ = ρ−1(X) = (μ ◦ π−1)(X) = X, p′′ = ϕ2(p
′) = 2p′ = 2X. (3.23)

Then the map �2 is expressed as follows (the right of figure 7):

(i) For 0 � X � L
2 : since 0 � p′′ � L, (3.20) implies

�2(X) = ρ(p′′) = 2X. (3.24)

(ii) For L
2 � X � L: since L � p′′ � 2L, (3.20) implies

�2(X) = ρ(p′′) = −2X + 2L. (3.25)

The dynamical system

Xn+1 = �2(Xn) = L

(
1 − 2

∣∣∣∣Xn

L
− 1

2

∣∣∣∣
)

=
{

2Xn 0 � X � L
2 ,

−2Xn + 2L L
2 � X � L,

(3.26)

coincides with the ultradiscrete Schröder map (2.10). Therefore, we have shown that the
ultradiscrete Schröder map (2.10) can be regarded as the duplication map on the Jacobian
J (C) of the tropical curve C defined by the tropical polynomial (3.12).

Similarly, we define the triplication map ϕ3 : J (C) → J (C) by

ϕ3(p) ≡ 3p(modL), p ∈ J (C), (3.27)

and introduce �3 : R → R as the conjugation map of ϕ3 by ρ,

�3 = ρ ◦ ϕ3 ◦ ρ−1. (3.28)

Then the corresponding dynamical system is given by

Xn+1 = �3(Xn) =

⎧⎪⎨
⎪⎩

3Xn 0 � Xn � L
3 ,

−3Xn + 2L L
3 � X � 2L

3 ,

3Xn − 2L 2L
3 � X � L

= 3Xn − 2 max(0, 3Xn − L) + 2 max(0, 3Xn − 2L), (3.29)

which is equivalent to (2.38) on [0, L]. For general m, the mth multiplication map yields the
dynamical system

Xn+1 = �m(Xn) = mXn + 2
m−1∑
i=1

(−1)i max(0,mXn − iL), (3.30)

which may be regarded as the ultradiscretization of the map arising from the mth multiplication
formula of sn2

cn2 .
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4. Concluding remarks

In this paper, we have presented a new relationship between two typical chaotic one-
dimensional maps, the Schröder map and the tent map, through the ultradiscretization.
Although the ultradiscretization has been developed in the theory of integrable systems,
the results in this paper imply the possibility of applying the method to a wider class of
dynamical systems. Our results also suggest that the tropical geometry combined with
the ultradiscretization provides a powerful tool to study a piecewise linear map, since the
ultradiscretization translates the geometric background of the original rational map into that of
the corresponding piecewise linear map. It would be an interesting problem to study various
ultradiscrete or piecewise linear systems, such as ultradiscrete analogues of Painlevé systems,
generalized QRT maps and higher-dimensional solvable chaotic maps in this direction.
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